%OAK RIDGE

National Laboratory

A Study of Cross-Platform, Cross-Compiler.
Performance and Portability '

L)) " i’ D | A
‘f,‘r)lr P

431101 -0 10 T
T \ngl'\,glg’” >
J110Q LQlQllQQlK()\ QY g D
(1 0\) 1\;‘\(\"“““)
JL0L0110110101 01 g1 gy et
01101010110101011 o0

Reuben D. Budiardja, ORNL

Sunita Chandrasekaran, U. Delaware
Josh Davis, U. Delaware

Johannes Doerfert, ANL

Alaina Edwards, ORNL

Jeff Larkin, NVIDIA

Verdnica G. Melesse Vergara, ORNL

'ENERGY

ORNL is managed by UT-Battelle LLC for the US Department of Energy °’ U.. DEPARTMENT OF
©

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of
Science User Facility supported under Contract DE-ACO5-000R22725 and resources of the National
Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science
User Facility operated under Contract No. DE-AC02-05CH11231.

Outline

e Motivation

e Benchmarks and mini-apps featured

— SPEC ACCEL

— GenASIS

— su3
e How to get more efficient compilers?

— Three (short) stories of application problems and better compilers
e Conclusions

%Q{XK RIDGE |¢625ie

ional Laboratory | FACILITY

Motivation

e Past works have focused primarily on the performance and portability of
codes across differing hardware architectures

e Performance portability is also required between compilers on the same
architecture

 Explore performance portability using widely available benchmarks and
mini-apps

 Provide feedback to vendors on issues identified

#(OAK RIDGE ggg%?:ﬁng

al Labor:

%OAK RIDGE

National Laboratory

Benchmarks &
Mini-applications

Benchmarks & Mini-Apps

e SPEC ACCEL (Standard Performance Evaluation Corporation Accelerator
suite)
— Collection of computationally intensive parallel applications in C and Fortran
— Includes OpenACC, OpenMP target offload, and OpenCL versions
e GenASiS (General Astrophysics Simulation System)
— A simulation system (a collection of solvers, manifolds, physics) for astrophysics
simulation
— A subdivision, GenAS1S Basics, contains simplified proxy-applications
e su3
— mini-application extracted from MILC (Lattice QCD code)
— matrix-matrix multiply with complex numbers

#(OAK RIDGE Lﬁgﬁnw

al Labor:

Experimental Setup: SPEC ACCEL

e SPEC ACCEL (https://www.spec.org/accel)

— Three benchmark sets: OpenCL, OpenACC, and OpenMP
e Here we focus on OpenACC and OpenMP sets
e ACC: contains OpenACC ports
e OMP: contains OpenMP ports

— Consists of 15 benchmarks in a wide range of domains: thermodynamics, molecular
dynamics, image processing, and more!
e 7inC;6in Fortran; 2 use C & Fortran
e Target system: Summit
— ACC experiments:
e PGI20.1,GCC9.2.0

— OMP experiments:
e XL16.1.1 PTF8, GCC9.2.0, LLVM 11.0.0-rc1 (C-only)

— Single node jobs offloading to a single
NVIDIA V100 GPU

Summit supercomputer (Source: ORNL)

LEADERSHIP
COMPUTING
FACILITY

%OAK RIDGE

National Laboratory

https://www.spec.org/accel

Results: SPEC ACCEL

%

e XL compiler and PGl compiler can compile

all benchmarks
— Improvement over previous XL versions

e GCC support can compile 11 OpenACC and

all OpenMP benchmarks
— 7 OpenMP and 2 OpenACC benchmarks
encounter runtime errors

e All but one of the C benchmarks compile

and run successfully with LLVM
— CSP encounters a compiler error

OAK RIDGE |55

National Laboratory | FACILITY

XL16.1.1

LLVM

GCC9.2.0
PTF8 |20.1 11.0.0rc1
Benchmark | oMP |[Acc|omp[Acc| omp
Stencil v 4 o 'J v 4 v 4
LBM f |[L[L|L]|
MRI-Q 4 | ! | X 4
MD ¥ [1T |7
PALM v 4 | ! | X
EP g [[X v
Cloverleaf v 4 g |« [X
cG ¥4 |« |« v
Seismic v v 4 ! | of
SP 4 | ! !
CSP v [L | X
miniGhost v 4 | ! |«
ILDBC ¥ [L | <
Swim 4 of : "
BT [L [|4 v

Results: SPEC ACCEL

B XL/OMP @ LLVM/OMP GCC/OMP B PGI/ACC

1000

100

1

Time (s)
I
———————————
]
]
——————————————]
]
-]
]

6\6(\0\\ \,%\‘\
Cloverleaf OpenACC / PGI:

e ~33x faster than OpenMP / GCC
e ~1.5x faster than OpenMP / XL

#0AK RIDGE | seesmsie

National Laboratory | FACILITY

<

K
O\oﬂe(\e:a g,e‘c“’ o (‘5“‘0cJ
Benchmarks
fCIoverIeaf CUDA: h
e ~43x and ~2x faster than
OpenMP with GCC and XL,

respectively
e ~1.3x faster than PGl OpenACC
. P y,

Cloverleaf CUDA: https://uk-mac.github.io/

o

Cloverleaf on Summit
1800 time steps running on 1 NVIDIA V100 GPU

GCC/OMP @4

XL/ OMP [l

PGI/ACC =5

CUDA |k

Programming Model

0 50 100 150 200 250

Run Time (sec)

https://uk-mac.github.io/

Lessons Learned: SPEC ACCEL

e More OpenMP implementations can now successfully compile the SPEC

ACCEL suite
e Can achieve good performance with OpenMP without significant changes
to the code

— More work is needed to match optimized CUDA versions for some of the
benchmarks

e GCC offloading has improved but performance gaps remain

e Need to work with implementation providers to report issues
— Iterative improvements resulted from collaboration with XL team
— Submitting issues for GCC

#(OAK RIDGE ggg%?:ﬁng

al Labor:

Experimental Setup: GenASiS

e GenASiS Weak-scaling of GenASiS Basics RiemannProblem
— Target system: Summit, Frontier (future) ® GPU = 7Threads CPUs = = Ideal Scaling
— Programming model: 4.00E+02

e OpenMP (CPU + target offload)
e CUDA /HIP library routines, to supplement

missing functionality in OpenMP 4.5 3.00E+02 . e e o
e CUDA / HIP kernels (experimental only)
— Compilers: 2.00E+02

e XL Fortran 16.1.1 PTF 8, nvcc / hipcc, GCC
e 1 GPU + n CPU threads per MPI task

b)) 1.00E+02
— “proportional resource tests
comparisons on Summit: P OB B--0-0 0.0 00000008
0.00E+00
7 CPU threads + 1 GPU per MPI task: B 100 1000

jsrun -ré6 -c7 -gl -al -bpacked:7
Number of MPI Ranks

LEADERSHIP
COMPUTING
FACILITY

%OAK RIDGE

National Laboratory

Results: GenASiS Basics RiemannProblem
Kernel timings for 50 cycles, 3D - 2563 cells per GPU (lower is better/faster)

® XL OpenMP V100 ™ nvcc (CUDA) m GCC 10.1.0 OpenMP V100/25 m XL OpenMP 7-Threads / 25

8.00E+00

6.00E+00 Timings for XL 7-threads CPU and
GCC 10.1.0 OpenMP offload on are
scaled down by 25X to fit this plot.

4.00E+00
©
o
=
- 2.00E+00
0.00E+00
° 2 N 3 > 2 @ > N2 >
C}Q'Q C}Q'Q B N 2 (\Q\\' S & & N -'\\6& <P Ny *?‘06
K J & $ X Q Q : o S S & o
& & W« R & S & N > ° &)
& N P R $ &£ & & &
Qo Qgp é‘(\ &QO 5@ &Q $o P &
@ N © ¥

%OA] Kernels

National Laboratory | FACILITY

Lesson Learned from GenASiS

e Explicit memory management and control of data movement is essential

for performance
— persistent memory allocation on the device
— explicitly map data location on GPU - avoid (implicit) allocation and transfer

/e Performance parity between OpenMP offload and CUDA is achievable
— OpenMP is more portable

— OpenMP has benefits of being more “natural” to the application

— compilers need to do a good job of optimization

— no need to rewrite kernels, simpler to port from multi-threading to GPU offload
\ — can continue to exploit base language feature (Fortran) y

EEEEEEEEEE
MMMMMM
ILITY

nal Labor:

Experimental Setup: su3

e su3 mini-app
— Target system: Cori GPU Nodes, Summit
— Programming model: OpenMP, CUDA

— Compilers:

Clang 11 [Cori]

CCE 9.0.0 (Classic) [Cori]
CCE 10.0.0 (LLVM) [Cori]
NVCC 10.2.89 [Cori, CUDA]
XL 16.0.0-5 [Summit]

— Mini-app: matrix-matrix multiply with
complex numbers, proxy for MILC

#0AK RIDGE | seesmsie

National Laboratory | FACILITY

Results: su3 mini-app

GFLOPs per Compiler ® Excess DRAM transactions responsible
NVCC (CUDQL) for Clang slowdown
Cray-ivm e Cray-classic slowdown associated with
Cray'cgzsnic small grid size, low utilization
g
0 200 400 600 800 1000 1200 o Can get 4.6x speedup by increasing
num_teams

#pragma omp target teams distribute
for(int i = 0; i < total sites; ++i) {

fpragna omp parsllel for collapse(3) e Unnecessary memory flushes in Clang
P caused by splitting directives,
fpragma omp target teams | interleaving code
#pragma omp parallel {
// compute istart, iend...
for (int i - istart; i < iend; ++i) | ® Restructuring directives gives an 18x
fpragma omp for collapse(3) .
// for loops... speedup with C|ang

%OAK RIDGE |¢625ie

National Laboratory | FACILITY

Lessons Learned: su3 mini-app

® Tuning is necessary for best performance across compilers

o Particularly of launch parameters: compiler defaults can be quite poor

e Splitting constructs can impair performance

O Avoid interleaving code between teams and parallel directives
e Some implementations are more robust than others

e Guide tuning and changes with profiling

#(OAK RIDGE Lﬁg%?:ﬁnw

al Labor:

I %OAK RIDGE
National Laboratory

How to get Efficient
Compilers?

. Ql1qy RS
‘JlQllQllQlQlQlQlQQllﬁ” 5
)1101Q01Q

110101011\ Q

11\ Q1

Three (short) stories of application problems
and better compilers

How To Get Efficient Compilers? --- Talk to the compiler people ...

Three (short) stories of application problems and better compilers

1. HPGMG

Application people: “One performance limiter | see with LLVM/Clang is a huge amount of time spent in
cuMemAlloc and cuMemFree calls.”

Compiler People (as | recall it): Thanks for reporting this, we’ll look into it!
Compiler People (as I recall it): Can you try this version?

Application people: “I now only see 1 cuMemAlloc [...] The net effect is that this particular version of HPGMG runs
2.4x faster”

% OAK RIDGE | ieeeste

National Laboratory | FACILITY

How To Get Efficient Compilers? --- Talk to the compiler people ...

Three (short) stories of application problems and better compilers

2. (Mini)QMCPack

- Observe a problem and file a bug:

Bug 46450 - More registers are used when multiple target regions are compiled together
(paraphrased)

- Compiler people: How to reproduce the problem?

- Application people: Here is a reproducer!
- Compiler people: |see, it’s a weird implementation detail, can you try this version please?

- Application people: It works for me, there are still issues but this solves my problem for now.

% OAK RIDGE | ieeeste

National Laboratory | FACILITY

https://bugs.llvm.org/show_bug.cgi?id=46450

How To Get EfflClent Compllers? --- TaIk to the compiler people...
Three (short) stc

3. GrIdMInI SU(E B unpatched, thread_limit(8) [patched, thread_limit(8) CUDA(8 threads) ifeng Lin (BNL)]
800

Day 1. “The ¢ A on V100).”
600
Day 2. Tropica
400
Day 3. - talking
- trying
- turns « e icantly!”
Day 4. - Profi 0 J
S

GB/s

“ . 0‘3 XQQ’ QQ’ & xc xo‘b KNS RS S LI I AR RN R N
Culprit for poor pert AP A/ 4 béO 6«5@ & K& & K ,@‘0 qgﬁo @Q’ &
N W F v &> ! v AT RN N gV o WY o7 A
- repol
bytes

III

“Application/Compiler Team communication is key!

LEADERSHIP
COMPUTING
FACILITY

;'_IQOAK RIDGE

National Laboratory

Conclusions

e Performance portability is often required not just between architectures
but also between compilers on the same architecture

e As seen with GenASiS and SU(3)xSU(3), it is not necessary to sacrifice
performance for portability
— OpenMP kernels can achieve performance parity with their CUDA version

e As seen with su3, significant speedups can be attained by tuning
parameters and rearranging OpenMP directives

e Talk to compiler vendors about observations, issues, problems, and ideas!
— More implementations that perform well on various architectures benefit
everyone!

#(OAK RIDGE ggg%?:ﬁng

al Labor:

Thank you! Questions?

%OAK RIDGE Lsﬁ%ﬁn.p

al Labor:

